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Possible link between guanosine 58 triphosphate hydrolysis and solitary waves in microtubules

B. Trpišová and J. A. Tuszyn´ski
Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

~Received 10 September 1996!

The cytoskeleton of eucaryotic cells is composed of several classes of protein polymers among which
microtubules~MTs! are the most prominent. Microtubules are important in a variety of cellular activities but
the physical reasons underlying their behavior are largely unknown. Inside the cell they usually exist in an
unstable dynamic state characterized by a continuous addition and dissociation of the molecules of tubulin. The
addition of each tubulin is accompanied by the hydrolysis of guanosine 58 triphosphate bound to theb
monomer of the molecule. Experiments show that an amount of energy comparable to 6.25310221 J is freed
in this reaction. A few researchers have put forward a hypothesis that this energy can travel along MTs as a
kinklike solitary wave. In this paper two models are analyzed whose special solutions are traveling kinks that
arise as a result of coupling between dielectric and elastic degrees of freedom of tubulin. By means of these
models a collision of the kink wave with an impurity in the microtubule is studied. The impurity may represent
a protein attached to the microtubule or a structural discontinuity in the arrangement of the tubulin molecules.
We conjecture that the collisions of the quanta of energy propagating in the form of kinks with such defects
may explain some features of the microtubule behavior.@S1063-651X~97!12503-X#

PACS number~s!: 87.15.He, 62.30.1d, 63.20.Mt, 64.60.Cn
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I. INTRODUCTION

Microtubules~MTs! are cylindrical protein structures tha
are the major constituent part of the cytoskeleton of all
caryotic cells. They have a form of hollow tubes whose wa
are assembled from the molecules of globular protein tu
lin. Tubulin is an approximately 831029-m-long dimer
composed of two monomers,a- andb-tubulin, each with a
molecular weight 50–55 kilodaltons. Molecules of tubulin
MTs form parallel protofilaments that are longitudinal
shifted with respect to each other, which results in a hel
arrangement of the tubulin subunits in the MT wall~Fig. 1!.
Most observed MTs have 13 or 14 protofilaments@1#. This
corresponds to a MT diameter of approximate
2531029 m. The length of an intermediate MT is abo
1026 m. In the axons of neurons they can be as long
several centimeters.

MTs participate in various cellular events. During ce
division they extend from two centrosomes located at
opposite poles of the dividing cell and attach to the sis
chromatids of each chromosome@2#. In anaphase the chro
matids are pulled apart by shortening MTs so that an eq
number of chromosomes is assigned to each of the two
ture daughter cells. In nondividing cells MTs form an arr
around the centrosome that is positioned close to the
nucleus. These MTs can serve as tracks along which
ganelles and vesicles are transported either towards or a
from the center of the cell. In neurons vesicles are mo
along MTs towards a synapse. MTs are the main compon
of the cores of cilia and flagella. These extensions from
cell surface are used to move fluids and other partic
around the cell or the whole cell. Both transport along M
and ciliary movement are achieved by means of a spe
class of proteins that bind to the MT surface and are ca
microtubule associated motor proteins@4#. Another group of
MT associated proteins that bind to MTs are called MAP
These proteins often serve as interconnecting bridges
551063-651X/97/55~3!/3288~18!/$10.00
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tween MTs and they are mainly known as promoters of M
assembly.

The array of MTs surrounding the centrosome is a d
namic structure. MTs are continuously growing and shrin
ing in random directions. This phenomenon is known as
namic instability@5#. Net growth or net shrinkage of a singl
MT is a result of growing and shrinking at the two MT end
According to observations the transitions between the gr
ing and shrinking phases at a MT end are stochastic. The
ends behave independently of each other: the frequencie
transitions between growing and shrinking and the rates
these processes at both ends are uncorrelated@6#. While the
assembly is a linear process the disassembly happens
rapidly.

The microscopic nature of the dynamic instability of MT

FIG. 1. A schematic drawing of a MT that consists of 1
protofilaments. The tubulin dimers are arranged in a helical man
~from Ref. @3#!.
3288 © 1997 The American Physical Society
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55 3289POSSIBLE LINK BETWEEN GUANOSINE 58 . . .
has not been elucidated yet. It is utilized by the cell,
example, in the early phases of cell division. In this per
MTs extend from the centrosome in random directio
Those that have completely shrunk are replaced by new o
that start growing from a different nucleation site. In such
way the MTs stochastically probe the whole cellular space
order to eventually become attached to the chromosome
@7# it was estimated that a chromosome is attached to a
within 2 min.

II. GTP HYDROLYSIS AND MODELS OF PROPAGATION
OF KINKS ALONG MICROTUBULES

The attachment of a tubulin dimer at a growing MT end
accompanied by the hydrolysis of guanosine 58 triphosphate
~GTP! bound at the exchangeable binding site on theb
monomer@8#. Experiments show that the exchangeable G
hydrolyses very soon after the tubulin binds to the MT.
pH57 this reaction takes place according to the formula

GTP421H2O→ GDP321 HPO4
221H11DE, ~1!

where the released energyDE is the same for the hydrolysi
of all 58 triphosphates and amounts toDE58.7 kcal/mol@9#.

GTP hydrolysis is a source of energy that is utilized by
MT in ways largely not explained. In@10# the measurement
of the standard free energy of the hydrolysis of the non
drolysable analogue of GTP, guanylyl-(a,b)
-methylene-diphosphate~GMPCPP! are reported. This en
ergy is 5.18 kcal/mol in solution, 3.79 kcal/mol whe
GMPCPP is bound within a free tubulin molecule, and on
0.9 kcal/mol56.25310221 J when the tubulin is embedde
in a MT as a subunit.

It is reasonable to assume that the energies released i
hydrolysis of GTP are in a ratio similar to the ratio betwe
the energies of the GMPCPP hydrolysis. Then the ab
numbers indicate that most of the energy of the GTP
drolysis is stored in the assembling MT. It is conjectured t
the stored energy has a form of conformational states of
tubulin dimers. The conformational changes of the tubul
after the hydrolysis may cause a mechanical strain that
stabilizes MTs. When, due to some other destabilizing ev
the MT starts to disassemble, the mechanical strain ma
the factor that causes breakage of the bonds between
tubulin subunits, which may result in a partial or over
destruction of the MT@10,11#. It has also been suggested th
if the stored mechanical energy is larger than the ene
needed for the breakage of the bonds between the tub
molecules, the surplus can be used to do mechanical w
for example, by coupling disassembly to the vesicle or ch
mosome movement@12#.

However, at least 6.25310221 J of the energy of the GTP
hydrolysis is not stored in a MT. Several groups of resear
ers put forward a hypothesis that this energy propag
along MTs as a solitary wave. Chouet al. @13# showed that
kinks and pulses excited, e.g., by the energy freed in the G
hydrolysis can propagate along MTs due to the coupling
tween the elastic states of the tubulin dimers. A part of
work presented here follows a paper by Sataric´ et al. @14# in
which it is suggested that nonlinear coupling between die
tric and elastic degrees of freedom of tubulin may give r
to kinklike excitations traveling along MT protofilaments.
r
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We can mention two other works by Sataric´ and co-
workers@15,16#. The authors proposed a model of propag
tion of kinklike torsion waves along MT protofilament
based on a similar equation of motion as in@14#. Using quan-
tum mechanical and nonequilibrium statistical physics me
ods they attempted to calculate theoretically some phys
characteristics of MTs.

In the following sections two models are presented t
are mathematically represented by nonlinear partial differ
tial equations that describe appropriate equations of mot
A special class of solutions of these equations are trave
kinks. The first model is a modified version of the mod
proposed by Sataric´ et al. @14# in which the dynamics of a
tubulin dimer is represented by a single~effective! equation
of motion derived for the elastic displacement of the dim
The electric field in the MT that enters into this equation
assumed to be constant. In this paper we modeled the ele
field in a MT as a function of the position along the MT. Th
second model was proposed by Gordon@17# to describe the
propagation of stress waves that are coupled to polariza
waves in ferroelectric crystals. These waves have the form
kinklike nucleation fronts.

Both models have been modified to study the effect o
collision of the traveling kink with a local defect in a MT
This defect is viewed as a local distortion that can be due
an attached associated protein or a structural discontinuit
the MT. Changing number of protofilaments, extra sea
~discontinuity along a MT caused by the mismatch of t
rows of tubulin dimers!, and point dislocations have all bee
experimentally observed. The collision with a local impuri
may, for example, be a way the energy of the GTP hydro
sis is transferred to another MT through an associated
tein. Based on Gordon’s model it will be shown that such
collision may be a factor in the MT destabilization or ma
even cause a complete destruction of a MT.

III. MODEL I: PROPAGATION OF DOMAIN WALLS
ALONG MICROTUBULE PROTOFILAMENTS

A. Equation of motion

It has been found in experiments that, like many oth
biological structures, MTs exhibit pyroelectric and piez
electric properties that arise as a result of elementary dip
moments carried by their subunits@18#. According to the
theoretical work of Fro¨hlich changes in conformational state
~spatial arrangements! of proteins can be induced by redis
tribution of charges within these polymers@19#. Adopting
Fröhlich’s concept, in@3# and other related works@20#, a
model of a MT automaton was proposed based on the
sumption that a tubulin molecule can possess two differ
orientational dipolar states that are coupled to the tubu
conformational states. These states were viewed as two s
of an electron that could be localized either towards thea or
towards theb monomer and they were termed thea and the
b state, respectively.

Following the considerations above we will assume t
each tubulin dimer can be in two dipolar states characteri
by opposite orientations with respect to the MT axis but
same magnitude of the dipole moment. These states will
be termed thea and theb state and they will be assumed
be coupled to the tubulin conformational states which m
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represent different elastic states of tubulin.
According to the model analyzed in this section the co

pling between dielectric and elastic degrees of freedom
tubulin is nonlinear. Special solutions of this model are tra
eling kinklike solitary waves that represent domain walls b
tween two chains of tubulin dimers characterized by differ
orientation of dipoles and therefore by different elastic sta
of tubulin. If lateral interactions between the neighbori
protofilaments in a MT are neglected, the domain w
propagates along one MT protofilament.

The solitary waves can be excited by the free portion
the energy of the GTP hydrolysis if this amount of energy
sufficiently large to alter the state of a tubulin dimer. Co
sidering only the nearest neighbor dipole-dipole interact
the energy of a tubulin dimer at an assembling MT end
about 10221 – 10220 J @21#. The latter numbers are of th
same order of magnitude as the energy freed in the G
hydrolysis. Hence, this energy may indeed initiate the k
waves traveling along MT protofilaments. In order for t
kinks to propagate the dipoles on the tubulin dimers have
be aligned in the same direction, i.e., the MT has to be i
ferroelectric phase@21#. When a MT is in this phase the
flipping one dipole can induce flipping of another dipole a
so on.

In the model by Sataric´ et al. the energy of an assembl
of dipoles placed at discrete sites in a MT protofilament t
consists ofN tubulin dimers is represented by the followin
Hamiltonian:

H5 (
n51

N F12M S dundt D 21 1

2
K~un112un!

2

2S a2

2
un
22

a4

4
un
4D2cunG . ~2!

In the equation above the variableun represents the projec
tion on the protofilament axis of the elastic distortion of t
tubulin molecule ~different conformation!. Describing the
dynamics of the tubulin dimers in terms of only one of t
variables~elastic state! assumes that the other variable~di-
pole state! behaves in the same way. Such a situation m
occur, for example, if both variables are strongly coupl
The meaning of the terms in Eq.~2! is the following.

1/2M (dun /dt)
2 is the kinetic energy of the tubulin mol

ecule of massM , 1/2K(un112un)
2 represents the elasti

energy that originates from the restoring elastic forces ac
between two neighboring dimers. The quartic double w
potential energyV(un)52(a2/2)un

21(a4/4)un
4 approxi-

mates the average effect of the surrounding dipoles on
dipole at siten. This approximation of the effect of the en
vironment assumes that all dipoles are in their equilibri
positions and they can be either in ana or in ab state, each
of which has the same energy. The dipole states of e
tubulin in thea andb state can then be represented by t
dipoles, which are aligned along the MT protofilament a
and point in opposite directions. In@21# calculations are pre
sented according to which a MT may undergo a dielec
transition from a ferroelectric to a paraelectric phase. Assu
ing that this transition has characteristics of a second o
phase transition,a4 is a positive constant anda2
5a2(Tc2T), wherea2.0 andTc is the critical temperature
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of the transition. Under these assumptions belowTc the po-
tential energyV(un) exhibits two symmetric local minima a
un56(a2 /a4)

1/2 for which Vmin52a2
2/(4a4) and a maxi-

mum atV(0)50 @Fig. 2~a!#.
The last term2cun in Eq. ~2! accounts for the effect o

an electric fields to which the chain of dipoles in th
protofilament can be exposed. The total electric fieldE at site
n of the protofilament produces potential energyVE
52cun52qeffEun , whereqeff is the effective charge of the
nth tubulin dimer. The addition ofVE to the quartic double-
well potential energyV(un) results in an asymmetric func
tion with two local minima and one local maximum. One
the two minima corresponds to a lower energy, which me
that the two dipole states are not equivalent but the state
is oriented in the direction of the electric field has a low
energy and thus it is energetically more favorable for
tubulin molecule to be in this state@Fig. 2~b!#.

A situation can be also considered when the dipoles
the tubulins are not parallel to the MT axis but tilted by
certain angle with respect to it. If the dipoles are tilted
different angles in thea and in theb state then the two state
do not have the same energy. However, dipoles tilted w
respect to an axis can be viewed as dipoles parallel to
axis that are subjected to an effective electric field@22#.
~Consider a dipole that can be in one of two orientatio
states that, when projected on a chosen axis, point in op
site directions. A Hamiltonian of an assembly of such
poles can be written as a sum of the Hamiltonian of an

FIG. 2. The local potential energy at a siten in a MT protofila-
ment when the MT is in a ferroelectric phase.~a! V(un), ~b!
V(un)1VE .
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55 3291POSSIBLE LINK BETWEEN GUANOSINE 58 . . .
sembly of dipoles in which each dipole can be in one of t
orientational states that are parallel to this axis and an ef
tive electric field. This electric field is a function of the in
teraction energies between the dipoles.! Then in Eq.~2! the
potential energyV(un) would be the same as for the ca
when the dipoles are parallel to the MT axis and the effec
the effective electric field could be included in the ter
2cun . Thus, if the dipoles on the tubulin dimers are tilte
by different angles with respect to the MT axis then the kin
that represent switching from thea to the b state orvice
versa~depending on which is energetically more favorab!
can form even without the presence of external elec
fields.

In order to derive a realistic equation of motion, the effe
of the medium surrounding a MT has to be taken into
count. Cellular MTs are imbedded in cytosol, which is
water solution of various ions. Ions and polar water m
ecules can affect the electrostatic interactions between
dipoles on the dimers and they can also act as a visc
medium and damp the motion of the dimers@14#. The damp-
ing effect can be represented by a viscous force

Fv52g
]un
]t

, ~3!

whereg is the damping coefficient.
The above force and the Hamiltonian~2! lead in the con-

tinuum approximation to the following equation of motio
for the displacement variableu(x,t):

M
]2u~x,t !

]t2
2KR0

2 ]2u~x,t !

]x2
2a2u~x,t !1a4u~x,t !3

1g
]u~x,t !

]t
2qeffE~x!50 . ~4!

Here,R05831029 m is the equilibrium distance betwee
two neighboring tubulin molecules and the rest of the para
eters in Eq.~4! can be determined as follows@14#:

Taking the molecular weight of each tubulin monomer
55 kilodaltons, the massM is 1.83310222 kg. The product
KR0

2 can be written in terms of the velocity of longitudin
soundv0: KR0

25Mv2R0
25Mv0

2. The speed of sound in
MT was approximately calculated in@23#. This calculation
yielded v0'610 ms21. However, in the numerical calcula
tions presented below the valuev051700 ms21 has been
used since it gave more physical results. The latter numb
the velocity of sound measured in DNA@24#.

The coefficientsa2 anda4 have not been determined fo
a MT so far. For the purposes of the analysis presented
we used the parameters experimentally measured in i
ganic crystals, which are known to form ferrodistortive d
main walls. Based on experimental data for the crys
Pb5Ge3O11 below the critical temperature the estimated v
ues of these parameters area2510 Jm22 K21 and
a451.631024Jm24 @25#. If a MT is in the ferroelectric
phase, then the critical temperatureTc can be approximately
taken as 350 K andT is body temperature, i.e., 310 K. Th
yieldsa25400 Jm22.

To determine the damping coefficientg, the tubulin dimer
can be considered a sphere of radiusRs5431029 m and
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massM that is moving in a fluid of viscosityh. The drag
force exerted by the fluid on the sphere is

Fv526pRsh
du

dt
52g

du

dt
. ~5!

Assuming that a MT is mainly surrounded by water mo
eculesh can be approximated by the viscosity of water
body temperature. Usingh5hwater56.931024 kgm21s21

gives for the damping coefficientg56pRsh the value
5.2310211 kg s21.

B. Electric field of a microtubule

The electric fieldE(x) in a MT may be due to the externa
fields produced by other cellular structures or other MTs a
also by the MT itself. The existence of the intrinsic fie
generated by a MT is indicated by the observation of
so-called ‘‘clear zone’’@20#. This is a space in the shape of
tube that surrounds a MT and is 5–10 nm wide. According
experiments, organelles, the cytoplasmic ground substa
or any other material normally seen throughout the cell,
very seldom present in this zone. Another indication ab
the electromagnetic nature of MTs comes from the exp
ments reported in@26# in which MTs aligned along electric
fields of the order of magnitude 1 Vm21 and magnetic fields
of intensity 0.02 T.

However, the exact distribution of charges in the tubu
molecules bound in a MT is not known. Therefore, an a
proximation was chosen to calculate the electric field o
MT. The charge distribution was represented by a net p
tive point charge placed at the protofilament axis at o
protofilament end and net negative point charge at its o
end. The electric fieldE(x) along the axis of the protofila
ment on which the kink propagates was assumed to be
duced by the remaining 12 protofilaments in the MT~the MT
was assumed to consist of 13 protofilaments!. The corre-
sponding formula is

E~x!5(
i51

12
qeff

4pe0e r
H L/21x

@di
21~L/21x!2#3/2

1
L/22x

@di
21~L/22x!2#3/2J , ~6!

whereqeff51.602310219 C, L is the MT length,e0 is the
permittivity of vacuum,e r is relative permittivity of a MT,
and di52Rsin(ia/2) is the distance of the axis of thei th
protofilament from the axis of the 13th protofilament. In t
latter expressionR510.431029 m is the distance of the
charges from the center of the MT anda52p/13 is the
angle subtended by each tubulin dimer.R was obtained by
approximating a tubulin dimer as a cylinder whose cro
sectional area has a radiusr52.531029 m ~and a height
R05831029 m!. The dielectric constante r is not known for
MTs. But because MTs are mainly surrounded by water m
ecules, this parameter can be approximated by the permi
ity of free water, which, depending on frequency, ranges
body temperature from about 70~static value! to about 4~in
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FIG. 3. The electric field generated along the axis of a MT protofilament by the charges of equal magnitudes and opposite sig
at the ends of the axes of the remaining 12 protofilaments. Each protofilament consists of 125 dimers.
nt
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as
the infinite limit! @27#. The electric field~6! is plotted for the
parameters given above,e r51 and a 1026 m long MT ~125
dimers! in Fig. 3.

C. Analytical solution „constant electric field
along a microtubule…

Equation ~4! can be solved analytically for a consta
electric field@14#. In order to find a solution in the form of a
traveling wave that moves at a constant velocityv, a moving
coordinatej5j(x2vt) can be introduced as follows:

j5F ua2u
M ~v0

22v2!G
1/2

~x2vt !. ~7!

The partial differential equation~4! reduces then to an ordi
nary differential equation

d2c

dj2
1r

dc

dj
2c31c1s50, ~8!

where

r5
vg

@Ma2~v0
22v2!#1/2

, s5a4
1/2a2

23/2qE ~9!

and

c~j!5
u~j!

u0
, u05S a2

a4
D 1/2. ~10!

The traveling kink wave solution of~8! is listed in@28#. The
solution that corresponds to a kink moving with a veloc
v.0 is
c~j!5c21
c12c2

11ej~c12c2!/A2
, ~11!

where

c15
2

A3
cosH 13arccosF3qE2a2

S 3a4

a2
D 1/2G J , ~12!

c25
2

A3
cosH 2p

3
1
1

3
arccosF3qE2a2

S 3a4

a2
D 1/2G J . ~13!

The maximum value of the electric field plotted in Fig.
is Emax52.623106 Vm21. For this value the variable
d5(3qE/2a2)(3a4 /a2)

1/250.000115. Hencec12c2 is
positive and the kink~11! is a domain wall between two
statesc5c1 whenj→2` andc5c2 whenj→`, travel-
ing to the right. This solution is consistent with the potent
energyV(u)1VE plotted in Fig. 2~b!. The state of the vari-
ableu5u0c changes from a negative to a positive value
the domain wall moves towards the right boundary.

Since the argumentd is very small for the values of the
electric field along a MT obtained from Eq.~6!, c1 andc2
can be safely expanded with respect tod around 0. Keeping
only terms up to the first order ind results in the following
approximate expression for the kink wave:

u~j!5S a2

a4
D 1/2F211

d

33/2
1

2

11eA2jG . ~14!
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FIG. 4. A kink wave moving along a section of a MT that is 125 dimers long. The wave is exposed to a decreasing electric fiel
MT. The electric field is plotted in units 2.623106 Vm21 and the displacementu(x) is in units 1.58310211 m. The time interval between
two successive waves isDt53.3831027 s.
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The latter equation is valid with very good accuracy and
was used in the numerical simulations presented below.

The kink solution of Eq.~8! is obtained if the following
condition is satisfied@14,28#:

vg

@a2M ~v0
22v2!#1/2

52A6cosH 4p

3

1
1

3
arccosF3qE2a2

S 3a4

a2
D 1/2G J . ~15!

Equation~15! determines the velocity of the kinklike solitar
wave. Solving Eq.~15! for the values of the paramete
a2, a4, g, M , and q5qeff given earlier and maximum
of the electric field E5Emax52.623106 Vm21 yields
v51.24 ms21. This number is much smaller than the velo
ity of phononsv051700 ms21. Due to thisv2 in the nu-
merator of the left-hand side of Eq.~15! can be neglected an
the right-hand side can be expanded with respect to the s
argumentd. The resulting approximate formula forv is

v5
3v0
ga2

SMa4

2 D 1/2qE5
3v0

ga2~Tc2T! SMa4

2 D 1/2qE.
~16!

The equation above shows how the velocity of kinks d
pends on the model parameters. For fixedT ~body tempera-
ture! varying the critical temperatureTc varies the velocity
of the domain walls. Clearly,v also changes when the ma
nitude of the electric field along the MT changes. Sincev
depends onE linearly, stronger fields produce faster movin
kinks andvice versa. The value ofE can be altered due to
t

all

-

several factors: subjecting a MT to external cellular elec
fields, varying the MT length@according to the approxima
tion ~6! longer MTs generate smaller electric fields andvice
versa#; e r may change due to the changes of ionic conc
tration of the surrounding cytosol, conformational changes
tubulin, or the presence of different tubulin isotypes; scre
ing caused by other charges within the tubulin molecule
substantially lower the value of the intrinsic electric field
a MT.

The kinklike domain walls can be viewed as bits of info
mation propagating along MTs@29#. Due to the coupling
between dielectric and elastic degrees of freedom of tub
this information can be coupled to mechanical events.
example, such kinks may be involved in the movement
motor proteins. If a kink arrives at the other MT end it ma
weaken the lateral bonds between neighboring tubulins
to the change of the tubulin conformational state. This m
cause dissociation of a tubulin dimer in the MT disassemb

D. Numerical solution „electric field changing as a function of
position along a microtubule…

In this section and the following section we present n
merical solutions of Eq.~4! under the assumption that th
electric fieldE changes along a MT according to formula~6!
using the approximate analytical solution~14! as the initial
condition. A sample calculation is given in Fig. 4, whic
shows a kink wave moving on a section of the MT protofi
ment along which the intrinsic electric field of the MT de
creases. At timet50 the center of the kink is positioned a
x52431027 m. At this point the magnitude of the electri
field is E5274 000 Vm21 and the corresponding initial ve
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locity obtained from formula~16! is 0.13 ms21. The time
interval between two successive waves isDt53.3831027 s.

As is clear from the figure the kink decelerates. Duri
the total time of simulationT52.731026 s the domain wall
moves a distanceD51.3231027 m, which is about 16 tu-
bulin dimers. The velocity of the kink at the end of the sim
lation was calculated approximately a
Ddend/Dt50.0289 ms21, whereDdend is the distance be
tween the last two plotted waves. To compare the numer
solution with the analytical solution the value of the elect
field in the center of the intervalDdend (60 000 Vm

21) was
substituted into Eq.~16!, which yieldedv50.0285 ms21.

Similar analysis was done for a kink wave moving on
section of the MT along which the electric field increases
was found that the velocity of the kinks also increased a
was consistent with the formula~16!. Thus, it can be con-
cluded that the waves move at a velocity that is proportio
to the value of the electric field as was also obtained ana
cally.

The results above imply that the velocity of the kinks
the lowest at the center of a MT since the electric field is
lowest at this point. At the center of a MT that is 125 dime
long the magnitude of the electric field
E(0)523 000 Vm21. The corresponding velocity from Eq
~16! is v(0)50.0109 ms21. In the center of a MT that con
sists of protofilaments composed of 1000 dimers the elec
field is 360 Vm21 and the velocity is v(0)
50.000171 ms21. It should be realized that the calculate
velocities will be almost two orders less if the static value
the relative permittivity ~70! is substituted into Eq.~6!.
Screening by other charges in the tubulin molecules m
considerably decrease the magnitude of the electric field
consequently the velocities of the kink waves as well.

We can see whether the velocities considered above c
be related to the dynamical processes associated with M
In @30# the measured rates of growth of MTs were in t
range 1.6–2.3mm/min540–65 dimer/s and the rates o
shortening were 10 times higher. As mentioned earlier
cytoplasmic transport along MTs is achieved by means
motor proteins attached to MTs. These are divided into t
main groups, kinesins and dyneins. Kinesin purified fro
squid axons was observed to move MTs at a velocity 0
mms21. The rates associated with cytoplasmic dynein w
measured in the range 1.25–2mms21. It could be mentioned
that the latter rates are the same as the rates of the pole
movement of chromosomes in prometaphase of cell divis
@4#. The measured rates of movement associated with fla
lar dynein purified from sea urchin andChlamydomonas
were about 10mms21. These numbers show that there
some agreement between the experimental measurem
and the calculated velocities of the kinks.

E. Effects of impurity potentials

The mathematical modeling presented in this pape
mainly focused on the effect of a collision of the travelin
kinklike solitary wave with an impurity in a MT. In this
model the impurity was viewed as a source of localized
tential energy, which was chosen to have the form of
Gaussian function below
-
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V~x!5V0(
n51

N

e2b$x2[xd1~n21!an] %
2
. ~17!

In the equation above,N is the number of defects along
MT protofilament,xd is the location of the first impurity,
an is the distance between two impurities,b is a constant
that determines the steepness of the Gaussian bump or
andV0 is the amplitude of the potential energy. The for
produced by the potential energy~17! is

dV~x!

dx
522V0b (

n51

N

$x2@xd1~n

21!an#%e
2b$x2[xd1~n21!an] %

2
. ~18!

This force was added to the left-hand side of Eq.~4!.
Figure 5 shows the motion of a kink wave on a section

the MT protofilament where the background electric fie
E(x) from the surrounding 12 protofilaments decreases
at time t50 s a localized potential energyV(x) centered at
xd523.731027 m is switched on. The kink starts movin
at a point x0524.031027 m with a velocity v0
50.13 ms21 and the time interval between two success
waves isDt51.3531027 s. The potential energy function i
a bump with parametersb51017 m22 and the amplitude
V051.00310222 J, which corresponds to the maximum am
plitude of the local force62.71310214 N.

As can be seen, in the presence of the localized poten
energyV(x) the velocity of the kink wave changes mo
rapidly compared to the case when only the electric field
present. When the kink approaches the defect, its velo
decreases because the local force produced by the impur
negative. When the kink moves away from the center of
defect, its velocity increases since the defect generate
positive force. Eventually the wave moves with a stead
decreasing speed due to the smoothly decreasing ele
field E(x). The overall distance traveled by the wave wh
the local potential energy is switched on is smaller than
distance the kink moves in the same amount of time only
the background of the electric field. This is indicated by t
difference between the last solid line and the dotted li
which represents a kink that traveled only on the backgro
of the changing electric field.

Increasing the amplitude of the local potential barrier
sults in a greater delay of the kink and when the amplitu
reaches a critical value the kink will come to a comple
stop. This is illustrated in Fig. 6 where the kink wave
stopped by a bump centered atxd523.731027 m. The am-
plitude of the bump is 1.00310221 J and the correspondin
maximum amplitude of the local force is62.71310213 N
~10 times larger than in the previous case!. The absolute
value of the minimum of the local force is larger than t
force due to the electric field at the corresponding po
@qeffE(23.723 1027 m) 5 (1.6023 10219)(1.743 106) N
512.78310214 N# and since the two forces have oppos
signs the kink is stopped.

The width of the kinks shown in Figs. 4–6 is about o
tubulin dimer. When the value of the sound veloci
v05610 ms21 is used, this reduces the kink width to abo
one-third of the tubulin dimer, which is not very realisti
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FIG. 5. A kink wave traveling on a section of a MT protofilament along which the electric field decreases. The protofilament co
defect that is represented by a localized potential energy centered at a pointxd523.731027 m. The amplitude of the local potential energ
is 1.00310222 J and the length of the MT protofilaments is 125 dimers. The dotted line shows how far the kink would travel if the
no defect. The electric field is plotted in units 2.623106 Vm21, the local force is in units 2.71310213 N, and the kink wave is in units
1.58310211 m.

FIG. 6. When the defect in a MT produces a sufficiently large potential barrier, the kink wave is stopped. In this case the amp
the potential energy due to the defect is 1.00310221 J and it is located atxd523.731027 m in a MT protofilament that is 125 dimers long
The units for all curves are the same as in Fig. 5.
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This means that using 610 ms21 as the value of the velocity
of sound in MTs within this model would require an adjus
ment of other model parameters. On the other hand, if i
assumed that the rest of the model parameters are co
then the value 610 ms21 for the velocity of sound in MTs
has to be corrected.

IV. MODEL II: PROPAGATION OF NUCLEATION
FRONTS ON MICROTUBULES

The second model of propagation of kinklike solita
waves in MTs analyzed here is based on the works@17# and
@31# in which is proposed a model of the interface motion
ferroelectric crystals. In@17# the Landau-Ginzburg-type fre
energy expansion is postulated in the following form:

F5F01
1

2
AP22

1

4
BP41

1

6
CP62

1

2
esP22

1

2
s0s

2

1
D

2 S ]P

]x D 2, ~19!

where P is polarization ands is mechanical stress tha
couples toP due to the piezoelectric effect. Coupling b
tweenP ands is expressed by the term12esP2, wheree is
an elastic constant. The parameters0 is related to the veloc-
ity of sound v0 and the densityr of the elastic medium
throughv05(rs0)

21/2. Without the terms containings, the
free energy~19! describes a first order phase transition
uniaxial proper ferroelectrics. The coefficientA is defined as
A5a(T02T), where T0 is the transition temperature a
which the paraelectric phase loses its stability~see Fig. 12,
of @32#!, B and C are positive constants. The ter
(D/2)(]P/]x)2 represents the nonuniformity energy that e
ists in the transition regions between domains in which
direction of polarization is different andD.0 @33#.

The time evolution of the order parameterP can be de-
rived using the time dependent Landau-Ginzburg equa
@34#,

]P

]t
52G

dF

dP
, ~20!

where G is the Landau-Khalatnikov damping coefficien
Substituting Eq.~19! into Eq.~20! and performing the varia
tional derivativedF/dP gives the following equation:

]P

]t
1G~AP2BP31CP52esP!2GD

]2P

]x2
50 . ~21!

The second equation fors and P can be found from the
coupling of both variables to the mechanical deformatione,
which is equal to

e52
]F

]s
5
1

2
eP21s0s. ~22!

Here,e5]u/]x is the strain tensor component correspon
ing to s. Hence, it satisfies the wave equation of an ela
medium with a densityr:
is
ect

-
e

n

-
c

r
]2e

]t2
5

]2s

]x2
. ~23!

After substituting Eq.~22! into Eq. ~23! the second equation
for coupled polarization and mechanical stress is obtaine

re

2

]2

]t2
P25S ]2

]x2
2rs0

]2

]t2Ds. ~24!

To find the solutions of the system of coupled equatio
~21! and ~24! in the traveling wave form the traveling coo
dinate j5x2vt can be introduced. Then Eq.~24! can be
integrated, which yields

re

2
v2P22~12rs0v

2!s5c1j1c0 . ~25!

In Eq. ~25!, c1 and c0 are integration constants. If it is as
sumed thatc15c050 ~the solutions forc1 andc0 nonzero
were studied, e.g., in@35#! and Eq.~25! is substituted into
Eq. ~21!, the following ordinary differential equation result
for P:

GD
d2P

dj2
1v

dP

dj
2G~AP2B̃P31CP5!50 , ~26!

where

B̃5B1
re2v2

2~12rs0v
2!
. ~27!

The solution of Eq.~26! is a traveling kink wave,

P5
Pf

A2
F11tanhS j

2D D G1/2, ~28!

where

Pf
25

B̃

2C F11S 12
4AC

B̃2 D 1/2G , ~29!

D5F 3D

4~B̃Pf
22A!

G 1/2, ~30!

and

v5
2

3
GD~4A2B̃Pf

2!

5GB̃S D6CD 1/2 8AC/B̃2212A124AC/B̃2

~122AC/B̃21A124AC/B̃2!1/2
. ~31!

We assume that a defect in a MT can be represented
local fluctuation of the density of the medium, which w
chosen to have a form similar to Eq.~17!:

r~x!5r0S 11r r (
n51

N

e2b$x2[xd1~n21!an] %
2D , ~32!



-

55 3297POSSIBLE LINK BETWEEN GUANOSINE 58 . . .
FIG. 7. Relative polarization
in a MT with the A lattice and
size 1333000 for Q̄
512310256 C2m2 ~dotted line!,
and the curve calculated by find
ing the roots of Eq.~33! ~solid
line!.
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where r05 const is the density in the medium when n
defect is present andr r is the dimensionless amplitude of th
density inhomogeneity.

The system of partial differential equations~21! and ~24!
in which the density of the medium changes along a M
according to Eq.~32! was solved numerically. As initial con
ditions were chosen the solutions for constant den
r5r0 that were obtained from Eq.~28! for P and by com-
bining Eqs.~28! and~25! for s. The value ofr0 was calcu-
lated asM /DV, whereM andDV were assumed to be th
same as in Sec. III. The velocity of sound was also cho
the same as in Sec III, i.e.,v051700 ms21.

The rest of the constants that appear in Eqs.~21! and~24!
are not known for a MT. However, the parametersA, B,
C, andD could be estimated by fitting curves of polarizatio
of a MT as a function of temperature, which were discuss
e.g., in @21#. The curve that was used for the estimate
represented by the dotted line in Fig. 7. The solid line is
fit. The dotted line is a normalized plot of polarization p
site ~sum of all dipole moments divided by the sum of ma
nitudes of all dipoles! obtained by applying the classica
Monte Carlo procedure to the system of dipoles in a MT t
consists of 13 protofilaments and 3000 rows. The dipole
both thea and theb state were assumed to be parallel to t
MT axis and only the nearest-neighbor interactions w
taken into account. The sites at which the dipoles are c
tered~centers of the tubulin dimers! formed a lattice of the
so-calledA type ~the A-type arrangement of tubulin mol
ecules in a MT can be seen in Fig. 1. Another possible
rangement of the tubulin dimers in a MT isB type. Both
arrangements are hexagonal and they differ by the amou
longitudinal shift between two neighboring protofilamen
@1,36#.!

The fit was calculated by adjusting the coefficients in
following equation:

05a2
t ~T2Tc!Pt1A4

t Pt
31A6

t Pt
52E2NkBT

]S1/2
]Pt

.

~33!
Equation~33! was obtained by taking the derivative of fre
energy with respect to the total polarizationPt ~sum of all
dipole moments! and setting the resulting expression equa
y

n

d,
s
e

-

t
in

e
n-

r-

of

e

0. In this equationE is an electric field that is parallel to th
MT axis,S1/2 is the entropy of the ensemble of spins who
projections on thez axis can have two values61/2,N is the
number of spins, andkB is Boltzmann’s constant.S1/2 is
given by the formula@37#

S1/25NkBF lnN2
112m

2
ln
N

2
~112m!

2
122m

2
ln
N

2
~122m!G , ~34!

wherem is one-half of the relative polarization. Since E
~34! is in terms ofm, Eq. ~33! had to be expressed in term
of m as well, which required a straightforward manipulatio
The coefficientsA2i

t , which were obtained from the fi
shown in Fig. 7, were transformed into coefficients that c
respond to the variable dipole moment~polarization! per site
according to the identity

Ak
t Pt

k215S Pt

N D k21

Nk21Ak
t , ~35!

where P5Pt /N is the dipole moment per site an
Ak5Nk21Ak

t are the corresponding coefficients. Their valu
are

a25a51.1431032 NC22m21K21, ~36!

A45B53.4131085 NC24m23, ~37!

A65C58.12310139 NC26m25. ~38!

The parameterD was estimated on the basis of the cla
sical interaction energy between two dipoles. If the an
between two dipoles at the interface between two doma
with different orientation of dipoles is assumed to be sm
thenD can be approximated by

D5
1

2pe0e rR0
53.2131016 NC22m. ~39!

All parameters above were calculated for the value of
relative permittivitye r570 ~static value for free water!, the
magnitude of the tubulin dipole moment 2.90310227 C m
andN539 000. The fit was obtained for the electric field s
to 3.53105 Vm21.
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It should be noted that the free energy~19! has the units
of energy per unit volume. However, the parametersA, B,
C andD are derived from an expansion that has the units
energy and for the variable dipole moment per site they c
respond to energy per site. In order to have the right dim
sions all terms in Eq.~19! except for the term 1/2s0s

2 have
to be divided by the volume of a tubulin dimer. The sam
result can be achieved by deriving such parametersA, B,
C, andD that correspond to the variable dipole moment p
unit volume. This can be done by replacingN with NDV in
Eq. ~35!.

A. Numerical results

1. Second order phase transition

According to our analysis the dielectric transition in a M
with theA lattice has features of a second order phase t
sition that is also indicated by the character of the cu
calculated using the Monte Carlo method in Fig. 7. The
merical simulations presented here were performed for b
first and second order phase transitions. In Fig. 8 is an
ample of a calculation performed under the assumption
the transition in a MT is a second order phase transition
this case the sign ofB in Eq. ~21! becomes opposite and th
termCP5 can be neglected. Assuming that the critical te
perature Tc5350 K gives A5a(TB2Tc)524.58
31033 NC22m21, whereTB5310 K is body temperature
Under these assumptions the solution of Eqs.~21! and ~24!
for the polarization wave is@28#

P5
1

2 S A
B̃
D 1/2H 12tanhF 1

2A2 S AD D 1/2jG J . ~40!

Thes wave can be obtained by substituting Eq.~40! into Eq.
~25! ~settingc05c150). The velocity of both solutions is
given by

v5
3

A2
G~AD!1/2. ~41!

Since there were no reliable experimental values availa
for the parametersG ande, throughout this section they wer
chosen arbitrarily such that the stress variable would h
realistic values. The simulation shown in Fig. 8 was p
formed for G53.08310224 C2 kg s21m22, e523.48
31023 C22m, andr r50.2. The scaling of the polarizatio
and the stress variables was the followin
P5(A/B)1/2P̄51.16310226P̄ C m and s53.16
3108s̄ Nm22, whereP̄ ands̄ are dimensionless scaled s
lutions shown in Fig 8. The initial velocity of both wave
was 79.3 ms21.

The plots in Fig. 8 show that both polarization and stre
wave change their shape when they collide with the impu
in the MT and after time approximatelyt51.9531028 s
they form stationary constant solutions along the MT. T
permanent stress that may be imposed in a MT in this wa
a factor in its destabilization. There are other factors t
may destabilize MTs: the mechanical stress that origina
due to the different conformation of GDP tubulin, as w
discussed in Sec. II; the presence of disassembly produc
f
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the form of ring oligomers that can laterally bind to the M
ends, causing their bending and, consequently, weake
the lateral bonds between the tubulin subunits in the M
@12#; weak points inside the MT, such as a missing molec
of tubulin or an abrupt change in the number of protofi
ments@36#. Due to the stationary stress that may form
means of the mechanism described here the MT instab
can reach a threshold and the MT disassembles. The la
the stationary stress the more likely the MT disassembly w
be.

Initially the amplitude of the stress wave has a magnitu
of about 3.453105 Nm22. According to the above scaling
the stationary stress in Fig. 8 has an amplitude of ab
s53.163107s̄ Nm22. This means that an interaction of
stress wave with a local defect results in higher mechan
stresses. The simulations performed have also shown
larger defects~larger density fluctuations! cause earlier for-
mation of the stationary solutions.

We can see from the following considerations that t
stresses above are realistic: The measurements report
@9# give EY50.53109 Nm22 for the value of Young’s
modulus that characterizes longitudinal stresses in M
From the first model the deformation of a tubulin dimer d
to the propagation of the domain wall along a MT protofil
ment isDR0 /R051.58310211/83102950.002. For these
values the magnitude of the longitudinal stresses in MTs
be estimated ass5EY(DR0 /R0)5106 Nm22.

If both waves were moving in a medium with a consta
density, the polarization wave would be a domain wall b
tween two portions of a MT that are in the ferroelectric a
paraelectric phase, respectively. Such domain walls
termed nucleation fronts. The variable polarization is an
erage of the dipole moments in all protofilaments at a po
x along the MT. Propagation of kinks along one M
protofilament could be modeled in the same way as in S
III by adding a term that contains electric field to Eq.~21!.
Including this term would also provide a means of contr
ling the velocity of the kinks.

Since the MT is assumed to be at a temperature that is
than critical temperature due to the propagating nuclea
front the dipoles in the MT eventually would become com
pletely ordered in a ferroelectric phase since this phase
responds to the minimum of the free energy~see Fig. 12!.
The result in Fig. 8 shows that an impurity in the MT caus
the dipoles to be not completely ordered since the amplit
of the stationary solution is about one-half of the amplitu
of the initial kink. Calculations have shown that the orderi
of dipoles due to the collision of the waves with an impur
was also different for differentG ande. At this place it can
be pointed out that the scaling ofP is such that the amplitude
of the polarization kink is initially about 4 times larger tha
the value that was used to derive the parametersA, B, C, and
D. This difference can be due to the fact that the parame
used were only estimates and also due to the model cho

2. First order phase transition

To perform simulations for the case of a first order pha
transition the value of the coefficientB had to be artificially
changed~this change, however, is still within the error of th
estimate!. This is because the value given in Eq.~37! yields
practically identical values forTc , T0 andT* , the latter be-
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FIG. 8. Scaled solutions~40! and ~25! for the values of parameters given in text:~a! polarization;~b! stress. The curves are plotted
times indicated, which are in units (D/A)1/2v0

2151.56310212 s. The amplitude of thes kink at t50 is 0.0011, which is very small on th
scale of the picture.
s t

this
ing the temperature at which the ferroelectric phase lose
stability ~see Fig. 12!. The temperaturesT0 andT* can be
calculated from the formulas@32#

T05Tc2
3

16

B2

aC
, T*5Tc1

B2

4aC
. ~42!
itsIn this section the parameterB was chosen such tha
B52AuAuC51.2331087 NC24m23, where A and C as-
sume values used in the previous section. Substituting
number into Eq.~42! and keepingTc , a, andC the same as
before yieldsT05320 K. SinceT5TB5310 K, the param-
eterA becomesa(TB2T0)521.1431033 NC22m21.
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FIG. 9. Scaled solutions~28! and~25! for the given values of parameters:~a! polarization;~b! stress. The times at which the curves a
plotted are in units (D/A)1/2v0

2153.12310212 s.
m
r- ns
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An example of a simulation using the modified para
etersA andB is shown in Fig. 9. The calculation was pe
formed for the values of e521.2531025 C22m,
G52.8310224 C2kgs21m22 and r r50.2. The scaling of
polarization and stress was P5(B/4C)1/2P̄
51.94310227 P̄C m ands5107s̄ Nm22, whereP̄ and s̄
are dimensionless scaled solutions obtained from Eqs.~28!
-and ~25! for c05c150. The initial velocity of both waves
was found by solving simultaneously algebraic equatio
~31! and~27!. For the parameters given above the value o
tained wasv52489 ms21. The minus sign means that bot
domain walls were moving to the left, in agreement with t
minima of the free energy; i.e., the assembly of dipoles in
MT switches from the paraelectric to the ferroelectric pha
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FIG. 10. Scaled solutions~28! and ~25! whenA is of the form~43! for p54.23105 Nm22: ~a! polarization;~b! stress. The times a
which the curves are plotted are in units (D/A)1/2v0

2153.12310212 s.
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The waves could propagate in the opposite direction
A had such a value that corresponds to a temperature a
critical temperature~see Fig. 12!. This can be achieved b
applying external pressures to the MT as will be discusse
the next section.

The results of the simulation in Fig. 9 are similar to tho
for the second order phase transition. Both domain w
if
ve

in

ls

change their shape as they approach the density fluctua
and converge to stationary solutions that have a cons
amplitude along the MT after time of aboutt54.6731028 s.

Adding a term that corresponds to an external elec
field to Eq.~21! should have a similar effect as in the case
the second order phase transition: one of the minima of
free energy that corresponds to the ferroelectric phase w
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FIG. 11. A plot of the initial velocity of the polarization and stress wave as a function of pressure obtained by numerically solv
~31! for the values of the parameters used to calculate the curves in Fig. 10.
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be favored with respect to the other minima. Thus, the
larization kink could model a domain wall between two su
chains of a MT protofilament in which the tubulin dipole
are in two different orientational states. The external elec
field would also govern the velocities of the waves. To che
this assumption one can construct the solution of the res
ing equation of motion by means of a method described
@38#.

3. Effects of pressure

Since MTs are embedded in cytosol they are subjecte
hydrostatic pressures. The lowest-order interaction of
type of ferroelectric crystal that was chosen here to mo
the dielectric properties of MTs with hydrostatic pressurep
is of the formVpP2, whereV is a function of electrostric-
tive compliances@39#. Adding this term to the free energ
~19! gives the coefficientA in the form

A5a~T2T0!12Vp. ~43!

This modification could have important consequences
the propagation of kinks along MTs. The functionV is not
known for a MT. In this paper we made an assumption tha
is constant and that its value is such that the term 2Vp is
comparable to ua(T2T0)u. Under these circumstance
changingp may alter the magnitude ofA significantly which
affects both the sign and the magnitude of the velocity of
domain walls@Eqs.~41! and ~31!#.

In the case of the second order phase transi
(T05Tc) the sign ofA is altered if the pressure becom
larger than2a(T2Tc)/2V. This will inhibit the propagation
of the kink waves since Eq.~26! does not have a real solutio
for C50 andB,0. In the case of the first order phase tra
-
-

ic
k
lt-
n

to
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el
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it

e

n
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sition for the values ofA that correspond to temperature
T,Tc the character of propagation of the solitary waves w
be the same as in Fig. 9: the MT will switch from th
paraelectric to the ferroelectric phase since the ferroelec
phase corresponds to the absolute minima of the free ene
WhenA exceeds the value that corresponds toTc the polar-
ization nucleation front and the stress wave will propagate
the opposite direction because the free energy has only
absolute minimum that corresponds to the paraelectric ph

The considerations above are illustrated in Figs. 10–
The plots of free energy in Fig. 12 correspond to Figs.
and 11. The parameters used to calculate the curves show
these three figures were the same as in the previous se
except forG, which was chosen one order of magnitu
larger:G52.8310223 C2kgs21m22. The parameterV was
for convenience set to V51/2ua(T2T0)u/105
55.7231027 C22m andp was scaled in the units of atmo
spheric pressure:p5105p̄ Nm22.

The simulation shown in Fig. 10 was performed f
p54.23105 Nm22. This value of pressure corresponds to
temperature aboveTc and therefore both polarization an
stress wave move in the direction opposite to that in Fig. 9
the MT switches from the ferroelectric to the paraelect
phase. The scaling ofP ands in this figure is the same as i
Fig. 9 and gives very reasonable values for both variab
Initially both waves move with a velocityv5339 ms21. The
time evolution of both kinks is similar to that in the simula
tions shown in the previous two sections: when the wa
approach the defect in the MT their shape changes and
some time permanent stress forms that is constant along
MT except for a small well at the place of the density flu
tuation. The MT is not polarized since it is in the paraelect
phase.
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FIG. 12. Free energyF(P,T)51/2a(T2T0)P
22BP41CP6 of a ferroelectric crystal whose dipoles can be in two equivalent orie

tional states as a function of temperature. The crystal can undergo a dielectric first order phase transition at a critical temperaturTc . The
temperature was effectively varied by replacinga(T2T0) with a(T2T0)12Vp where for fixedT andT0 different values ofp were used.
The plots are calculated for MT parameters given in Secs. IV A and IV A 3.~a! T5T0 (p513105 Nm22). The paraelectric phase lose
its stability. At this temperature the local minimum that corresponds to the paraelectric phase disappears and at temperaturesT,T0 the free
energy exhibits two symmetric absolute minima that correspond to the two equivalent orientations of the dipoles in the ferroelectr
~b! T0,T,Tc (13105 Nm22,p,43105 Nm22). The free energy has a local minimum atP50 and two symmetric absolute minim
that correspond to the ordered phase.~c! T5Tc (p543105 Nm22). At the critical temperature the minima that correspond to the t
dielectric phases are equivalent and the crystal undergoes a phase transition.~d! T5T* (p553105 Nm22). At this temperature the
ferroelectric phase loses its stability: the two local minima that correspond to this phase disappear and aboveT* the free energy has only on
minimum atP50.
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Figure 11 is a plot of the initial velocity of the polariza
tion and stress waves as a function of pressurep. This plot
was obtained by numerically solving Eq.~31!. As can be
seen in the figure the velocity is negative for pressures
thanp543105 Nm22. These pressures correspond to te
peratures belowTc for which the free energy exhibits tw
symmetric absolute minima that correspond to the ferroe
tric phase. This means that due to the propagating polar
tion wave a MT switches into the ferroelectric phase~curves
a andb in Fig. 12!. At p543105 Nm22 the minima cor-
responding to the ferroelectric and paraelectric phases h
the same depth. This is equivalent toT5Tc at which the sign
of the velocity changes~curvec in Fig. 12!. For larger pres-
sures than the above limiting value the velocity of the kin
is positive and the assembly of dipoles in a MT switches i
the paraelectric phase since the free energy has only
absolute minimum atP50 ~curved in Fig. 12!. At pressures
lower thanp.3.83105 Nm22 no kink waves exist becaus
Eq. ~31! does not have a solution for such values ofp. On
the other hand the solution of Eq.~31! exists for quite large
pressures up to the order of magnitude 107 Nm22 ~not
shown in the figure!. These results imply that certain pre
sures may inhibit the propagation of the polarization a
stress domain walls on MTs. It should be noted that si
depolymerization of MTs by hydrostatic pressures of ab
200 atm has been reported@40# the values of pressure con
sidered here are quite reasonable.

V. DISCUSSION

In this paper two models were used to describe quant
energy traveling in the form of solitary waves along MTs. A
ss
-

c-
a-

ve

s
o
ne

d
e
t

of

has been suggested before these waves may be initiate
the free portion of the energy of the GTP hydrolysis who
role in the MT behavior is largely unknown.

The first model is represented by a partial different
equation for the elastic displacement of the tubulin dim
The equation was set up under the assumption that a MT
undergo a second order dielectric phase transition and i
cludes a term that corresponds to an external electric fi
Such a model can be used to describe propagation of
klike solitary waves along a single MT protofilament. The
waves may be excited by the addition of one tubulin dimer
the protofilament since the energy freed in the GTP hydro
sis that accompanies this process is comparable to the en
needed to initiate the wave. For the approximations cho
the velocity of the solitary waves depends linearly on t
value of the electric field. This implies that the intrinsic ele
tric field of a MT or the external fields from other MTs o
cell membranes may control the propagation of these wa
Since the kinks may be linked to other events that invo
MTs, this implies that the electric fields may govern the
events. The magnitudes of the velocities for the numer
values of the parameters used are quite consistent with
experimentally measured rates of movements associated
MT motor proteins.

The motion of kinks can be slowed down by a decreas
electric field but also by a defect present in the MT who
effect can be viewed as a local potential energy barrier.
sufficiently large barriers the kink waves are stopped. T
question now is what happens to the energy transported.
may speculate that it is transferred to another MT via
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attached MAP or it plays a role in the movement of a mo
protein. Another suggestion is that it creates a domain w
between two portions of a MT protofilament in which th
tubulin dimers are in different elastic states. This instabi
may be a factor in the MT disassembly.

The second model was represented by two coupled pa
differential equations for the variables polarization a
stress. Polarization forms a kinklike nucleation front th
propagates along a MT. Hence, it may be excited by a sim
taneous addition of several tubulin dimers. In the case
both first and second order phase transitions the polariza
waves are domain walls between ferroelectric and parae
tric phases. When the MT is below critical temperature
switches from the paraelectric to the ferroelectric phase
the wave propagates. Above critical temperature the situa
is the opposite. Collision with an impurity in the MT resul
in the formation of a constant stress along the whole M
According to the simulations the amplitude of the station
stress can be several orders of magnitude larger than
amplitude of the initial kinklike stress wave. Hence, as
result of such a collision there is a permanent stress in
MT that destabilizes it or the stress may be so large that
collision causes a destruction of the MT.

For this model we also studied the effect of external pr
S
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ll

ll
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ial
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sure on a MT. According to the results the external press
may effectively enlarge the temperature of the MT so tha
exceeds the critical temperature. This would change the
electric phase of the MT. The pressure also affects the
locity of the kinks and for certain pressures the kinks do
propagate at all. Thus, the hydrostatic pressure to whic
MT is subjected in the cellular environment may act in so
circumstances as a kink inhibitor.

It can be noticed that the values of the velocities of t
waves obtained in the second model are several order
magnitude larger than the velocities obtained in the fi
model. Fore r570 and the charge of the dipole equal to
few electronic charges the velocities of the waves descri
by the second model were about 102 ms21 and for the first
model they would be 102221025 ms21 ~note that the veloc-
ity of sound is 1700 ms21). However, the second model wa
analyzed neglecting the presence of an external electric fi
which was incorporated into the equation of motion that re
resents the first model. The electric field acted as a mea
control of the magnitudes of the velocities of the kink
Thus, the two models can be made more comparable by
corporating the term that corresponds to the external elec
field into the equations of motion of the second model.
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@14# M. V. Satarić, R. B. Žakula, and J. A. Tuszyn´ski, Phys. Rev. E
48, 589 ~1993!.
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